If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30=7x^2+2
We move all terms to the left:
30-(7x^2+2)=0
We get rid of parentheses
-7x^2-2+30=0
We add all the numbers together, and all the variables
-7x^2+28=0
a = -7; b = 0; c = +28;
Δ = b2-4ac
Δ = 02-4·(-7)·28
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*-7}=\frac{-28}{-14} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*-7}=\frac{28}{-14} =-2 $
| (i+1)^2=0 | | a=-0.875 | | -5=-8(-3)+b | | x-(-23.5)=2.342 | | 14x=3x+34 | | 6x+10=5x+13 | | 23=-4x+2x+5 | | 14x+3x+34=180 | | 2s=4s−2 | | -1+5x-3x=-17 | | y5=12.5 | | -1+x-3x=-17 | | 9−4g=-5g | | 90=x+(3x+10) | | -33-3a=-6(2a-5) | | ½(x-2)=5 | | -3z+9=-3z | | 4x^2-9=42 | | 2w=-5w+7w | | 180=(2x+45)+x | | 3x+(2x-2)=28 | | 106y=16 | | 3t−-14t=17 | | 3−s=4 | | 2(2x+4)=3(4x+8) | | 40=-16^t2+88t | | 12.25=2g+3.69 | | 90=5x+(x+54) | | 180=(x+12)+x+100 | | b/5+1/3=14 | | 100=(x+12)+x | | h+4/5=5/6 |